

Overview

day one

0. introduction

1. text output and manipulation

2. reading and writing files

day two

3. lists and loops

4. writing functions

today

5. conditional statements

6. dictionaries

day four

7. files, programs and user
input

8. biopython

day five

 hands on training

 feedback and discussion

This course (apart from chapter 8) is based on the book "Python for Biologists":

http://pythonforbiologists.com/

http://pythonforbiologists.com/

Today

● Pad for today: http://python-from-scratch.pad.spline.de/3?

● Longer lunch break: 11:30 – 13:00

http://python-from-scratch.pad.spline.de/3

 from scratch

A primer for scientists working with Next-Generation-
Sequencing data

CHAPTER 5

Conditional tests

Why conditions?

Decisions need to be made based on the given situation.

The more different cases your code is able to handle, the
more flexible and useful it will be.

Checking for conditions increases the fault tolerance of your
programs.

Example: Filtering DNA sequences

"Filter a number of DNA sequences such that only sequences
longer than 100 bp are retained."

read
sequence

sequence
length

> 100 bp?

output
sequence

yes

no

start decision

Conditions as logical statements

making decisions requires evaluating the truth of (logical)
statements

logical statements can only have two values:
● True
● False

examples:

len(sequence) > 100
len(seq1) == len(seq2)
get_gc_content(seq) <= 0.5
5 < 8

Operators

The following operators can be used in simple comparisons:

operator explanation example

< less than 3 < 5

<= less than or equal 3 <= 5

> greater than 8 > 5

>= greater than or equal 8 >= 5

== equal len('AAA') == 3

!= not equal "AAA" != "aaa"

in test if element is in a list 3 in [1,2,3]

not inverts the value of the
following test

not 5 in [1,2,3]

More conditional testing

There are quite a few more ways to test for properties of
values (especially strings).

These tests are mostly performed by string methods:

operator explanation example

startswith check prefix of a string "ACGT".startswith("A")

endswith check suffix of a string "ACGT".endswith("T")

islower Is given string in lower
case?

"acgt".islower()

isupper Is given string in upper
case?

"ACGT".isupper()

Conditional statements: if

if len(dna) >= 100:
 print(dna)

body: this code block is executed only if
the condition is met (i.e. equals True)

condition

If-statement example

● Here is a more useful example:

● Note: Indentations are nested whenever a new code block
is introduced!

accs = ['ab56', 'bh84', 'hv76', 'ay93', 'ap97', 'bd72']
for accession in accs:

if accession.startswith('a'):
print(accession)

If-else-statement

● What if we need to do something when the condition is not
met?

● implements an "either or" situation

file1 = open("one.txt", "w")
file2 = open("two.txt", "w")
accs = ['ab56', 'bh84', 'hv76', 'ay93', 'ap97', 'bd72']
for accession in accs:

if accession.startswith('a'):
file1.write(accession + "\n")

else:
file2.write(accession + "\n")

elif statements

● Handling more than two cases can results in bulky if-statements:

● The elif clause makes your code more readable:

if exp_lvl <= 100:
 print("gene is lowly expressed")
else:

if exp_lvl > 100 and exp_lvl <= 150:
print("gene is normally expressed")

else:
print("gene is highly expressed")

if exp_lvl <= 100:
print("gene is lowly expressed")

elif exp_lvl > 100 and exp_lvl <= 150:
print("gene is normally expressed")

else:
print("gene is highly expressed")

Conditional loops: while

remember the for loop:

conditions can be used in while loops:

The while loop iterates (i.e. runs) as long as the condition is true.

samfile = open("mapping.sam")
line = samfile.readline()
while line.startswith('@'):

line = samfile.readline()

for element in some_list:
do something

Complex conditions

● Simple conditional tests can be combined using "and",
"or" and "not":

accs = ['ab56', 'bh84', 'hv76', 'ay93', 'ap97', 'bd72']

for accession in accs:
if accession.startswith('a') and accession.endswith('3'):

print(accession)

for accession in accs:
if accession.startswith('a') or accession.startswith('b'):

print(accession)

for accession in accs:
if accession.startswith('a') and not accession.endswith('6'):

print(accession)

true/false functions

● boolean functions are no different than other functions:

def is_at_rich(dna):
length = len(dna)
a_count = dna.upper().count('A')
t_count = dna.upper().count('T')
at_content = (a_count + t_count) / length
if at_content > 0.65:

return True
else:

return False

Note: This function will not work correctly with Python 2 unless you include the following
import at the top.

from __future__ import division

true/false functions

● Now you can use the function in conditional statements...

● ...or for testing purposes

if is_at_rich(my_dna):
do something with the sequence

test function "is_at_rich()"
assert is_at_rich("ATTATCTACTA")
assert is_at_rich("attatctacta")
assert not is_at_rich("CGGCAGCGCT")

Recap

In this unit you learned about:

● conditions

● using conditions in conditional statements

● combining conditions into more complex statements
using boolean operators

● handling and returning boolean values

● writing, testing and using boolean functions

Exercise 5-1: filtering data

● In file data.csv you find the following input:

● The data is structured in 4 fields (separated by commas):

1. species name

2. DNA sequence

3. gene name

4. expression level

D. melanogaster,atatata[...],kdy647,264
D. melanogaster,actgtga[...],jdg766,185
D. simulans,atcgat[...],kdy533,485
[...]

Exercise 5-1: filtering data

● Filter the input data by the following criteria:

a) Species name: Print out the gene names for all genes
belonging to D. melanogaster or D. simulans

b)Length range: Print out the gene names for all genes
between 90 and 110 bp long

c) GC content: Print out the gene names for all genes whose
GC content is less than 0.5 and whose expression level is
greater than 200.

d)Gene name: Print out the gene names for all genes whose
name begins with "k" or "h" except those belonging to D.
melanogaster.

Exercise 5-2: AT content

● Using the same input data as in ex. 5-1, print for each
gene, whether its AT content is

– high: greater than 0.65

– low: less than 0.45

– medium: between 0.45 and 0.65

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

